III B. TECH II SEMESTER REGULAR EXAMINATIONS APRIL - 2023 DESIGN AND ANALYSIS OF ALGORITHMS (COMMON TO CSE, INF \& CSM BRANCHES)

Time: 3 hours

Max. Marks: 70

Note: Answer ONE question from each unit (5 $\times 14$ = $\mathbf{7 0}$ Marks)

UNIT-I

1. a) Explain recursive binary search algorithm with suitable example.
b) What is space complexity? Illustrate with an example for fixed and variable part in space complexity.
(OR)
2. a) Explain the time complexity of quick sort in an average case.
b) Describe various asymptotic notations used to represent complexity [8M] of algorithms with examples.

UNIT-II

3. a) Explain the Single source shortest path problem with an example.
b) What is optimal merge pattern? Apply optimal merge pattern for ten files whose record lengths are $28,32,12,5,84,53,91,35,3$, and 11 .
(OR)
4. a) Find an optimal solution to the Knapsack instance $\mathrm{n}=3, \mathrm{~m}=20$, (P1, $\mathrm{P} 2, \mathrm{P} 3)=(25,24,15)$ and $(\mathrm{W} 1, \mathrm{~W} 2, \mathrm{~W} 3)=(18,15,10)$.
b) Write an algorithm for Greedy knapsack.

UNIT-III
5. a) Differentiate between greedy method and dynamic programming.
b) Define string editing problem. Explain with an example.
(OR)
6. a) Explain how solution will be provided for all pairs shortest path problem using dynamic programming.

UNIT-IV
7. a) Give the solution to the 8 -queens problem using backtracking. [7M] Draw the state space tree.
b) Find the Hamiltonian cycles in the following instance of graph problem. Provide state space tree.
(OR)
8. a) Give the statement of sum -of subsets problem. Find all sum of subsets for $n=4,(w 1, w 2, w 3, w 4)=(11,13,24,7)$ and $M=31$. Draw the portion of the state space tree
b) Explain Graph coloring algorithm with example.

UNIT-V
9. a) Write short notes NP-hard and NP-complete problems.
b) Discuss about cook's theorem.
(OR)
10. a) Describe about Control Abstractions for LC-search.
b) State the concept of branch and bound method and mention its applications.

